International Journal of

HEAT ..« MASS
TRANSFER

PERGAMON International Journal of Heat and Mass Transfer 41 (1998) 4229-4249

Modeling forced liquid convection in rectangular
microchannels with electrokinetic effects

Chun Yang®, Dongqing Li**, Jacob H. Masliyah®

* Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada
® Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G6, Canada

Received 9 September 1997 ; in final form 18 March 1998

Abstract

The effects of the electric double layer near the solid—liquid interface and the flow induced electrokinetic field on the
pressure-driven flow and heat transfer through a rectangular microchannel are analyzed in this work. The electric double
layer field in the cross-section of rectangular microchannels is determined by solving a non-linear, two-dimensional
Poisson—Boltzmann equation. A body force caused by the electric double field and the flow-induced electrokinetic field
is considered in the equation of motion. For steady-state, fully-developed laminar flows, both the velocity and the
temperature fields in a rectangular microchannel are determined for various conditions. The flow and heat transfer
characteristics with/without consideration of the electrokinetic effects are evaluated. The results clearly show that, for
aqueous solutions of low ionic concentrations and a solid surface of high zeta potential, the liquid flow and heat transfer
in rectangular microchannels are significantly influenced by the presence of the electric double layer field and the induced
electrokinetic flow. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature n, bulk concentration of ions [m~?]

A, cross-section area of the channel [m?] Nu Nusselt number

C; friction coefficient P hydraulic pressure in x-direction [Pa]
C,; specific heat capacity of liquid [J kg™' K '] Pe  Peclet number

D, channel hydraulic diameter [m] Pr  Prandtl number

e elementary charge [C] Pg channel perimeter [m]

Ec Eckert number ¢ heat flux [W m~7]

EDL electrical double layer 0., Qo, volume flow rate with and without EDL effects,
E, streaming potential [V m™'] respectively [m® s™']

f friction factor Re, reference Reynolds number

G,, G, non-dimensional parameters T temperature [K]

h, local heat transfer coefficient [W m™> K '] u fluid velocity component in x flow direction [m s~']
H  channel height [m] Upes Ugave average fluid velocity with and without EDL
I, I, conduction and streaming current, respectively [A] effects, respectively [m s~!]

k, Boltzmann constant [J mol~' K '] U reference velocity [ms™']

K non-dimensional electrokinetic diameter

L channel length [m]

n,, n_ local concentration of positive and negative
ions, respectively [m ]
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v, w fluid velocity component in y and z direction,
respectively [m s™']

W half channel width [m]

X, X non-dimensional x-coordinate

Y, Z non-dimensional y-coordinate and z-coordinate,
respectively

z,, z_ valence of the positive and negative ions,

respectively.
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Greek symbols

o thermal diffusivity of the fluid [m? s™']

. dielectric constant of the fluid

& permittivity of vacuum [CV~'m™']

0 temperature of the fluid [K]

0 non-dimensional temperature of the fluid

x  Debye-Huckel parameter [m ']

x; thermal conductivity of the fluid [W m~' K]
s 4s  bulk and surface electric conductivity of the fluid,
respectively [1 Q' m™']

U, apparent viscosity of the fluid [kg m~' s7]

u;  dynamic viscosity of the fluid [kg m ™' s™']

{ zeta potential [V]

p. net electric charge density [C m 7]

o density of the fluid [kg m ]

Y local electrostatic potential in the EDL [V]

Y non-dimensional electrical potential.

2]

Superscript
non-dimensional parameters.

1. Introduction

Understanding of microscale transport phenomena is
important to the design and process control of various
Micro-Electric-Mechanical Systems (MEMS) and many
modern instruments used in chemical analysis and biom-
edical diagnostics. The microchannel heat exchanger or
microchannel heat sink is such an example [1]. Micro-
channel heat sinks have a great potential for cooling
high power VLSI circuitry [2] and high power laser diode
arrays [3]. However, many experimental observations [4]
have shown that heat transfer and flow phenomena in
microscale are quite different from those in macroscale.
It is, therefore, necessary to study the fundamental
characteristics of these phenomena in order to develop
the related high technology products.

Since the pioneering work of Tuckerman and Pease
[2], a significant amount of experimental information has
been generated in the areas of forced flow and convection
heat transfer in microchannels [4, 5]. Anomalous
behaviors of microchannel flow and heat transfer were
observed by some investigators in their experiments.
Pfahler et al. [6, 7] conducted an experimental inves-
tigation of fluid flow in microchannels. They found that
in relatively large flow channels, the experimental obser-
vations were in a rough agreement with the predictions
from classical theories. However, deviations from the
classical Poiseuille flow were observed in the small chan-
nels (hydraulic diameter less than 40 um). This may imply
that certain phenomena become important at smaller
channels or that the conventional form of the Navier—
Stokes equation is not adequate for modeling micro-
channel flow. Moreover, their results indicate that polar
fluids (isopropanol) and non-polar fluids (silicon oil)

behave differently, and thus polar nature of the fluid may
play a role in the microchannel flow. Similarly, Urbanek
et al. [8] measured liquid (1- and 2-propanol, 1- and
3-pentanol, and water) flow through 5, 12 and 25 um
hydraulic diameter microchannels with liquid tem-
perature varying from 0-85°C. The Poiseuille number
(i.e., friction coefficient) dependence on fluid temperature
and the channel size was reported (according to the con-
ventional theories, the Poiseuille number should be inde-
pendent of fluid properties and only a function of the
cross-section of the channel). Also the ratio of the mea-
sured friction coefficient to the predicted friction
coefficient was found to change from 1.01-1.30 depend-
ing on the working fluid and the temperature. Muham-
mad and Gui [9] performed experimental measurement
of water flow and heat transfer in silicon wafer micro-
channels with different ratios of height to width. Their
experiments showed that the friction coefficient is slightly
higher than that predicted by classical theories. Again
the significantly high heat transfer coefficient in micro-
channels (compared with that in macrochannels) was
obtained. More recently, Peng and Wang [10] and Peng
and Peterson [11] systematically examined the forced flow
and heat transfer characteristics of water and binary mix-
tures flowing through rectangular microchannels. It was
observed that the laminar flow transition occurred at
Reynolds number between 200 and 700, and the critical
transition Reynolds number diminished with the decrease
in the size of the microchannels. Furthermore, the strong
effects of the hydraulic diameter and the aspect ratio on
the flow and heat transfer in microchannels were found.
Overall, these investigations provided substantial exper-
imental data and considerable evidence that the flow and
heat transfer in microchannels are strongly dependent
upon the type and properties of the working fluid as
well as geometric parameters of microchannels [12], and
therefore may be quite different from what typically occur
in macrochannels.

On the theoretical side, Eringen [13, 14] extended con-
tinuum fluid theory to describe microfluid behavior. He
proposed a microcontinuum theory to describe the trans-
lation, rotation, and deformation of individual fluid
elements. He stated that the fluid flow in microchannels
will deviate from the prediction of the classical N-S equa-
tion. Later Jacobi [15] employed this microcontinuum
theory to a fully developed, laminar convection in a cir-
cular duct with constant heat flux. The ‘distorted’ velocity
and temperature profiles (compared with the con-
ventional profiles) were reported. Jacobi also showed that
Nusselt number is reduced by as much as 7% for polar
fluids from the theoretical value of 4.36. In addition, slip
flow theory, based on the rarefied dynamic model, has
also been introduced to model microscale flows [16, 17].
Nevertheless, as pointed out by Duncan and Peterson [4]
in their excellent review of microscale heat transfer, little
fundamental work on the microchannel flow and heat
transfer has been done since the early work by Eringen.
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The objective of this paper is to evaluate the influence
of interfacial electrokinetic phenomena on the flow and
heat transfer in rectangular microchannels, in an attempt
to provide insight into mechanisms of microchannel flow
and heat transfer. In this study we believe that the elec-
trical double layer near the liquid—channel wall interface
and the electrokinetic flow may be responsible for these
unusual behaviors of the microchannel flow and heat
transfer. It is known that most solid surfaces carry
electrostatic charges, i.e. an electrical surface potential.
If the liquid contains a very small number of ions (for
instance, due to impurities), the electrostatic charges on
the non-conducting solid surface will attract the coun-
terions in the liquid. The rearrangement of the charges
on the solid surface and the balancing charges in the
liquid is called the electrical double layer (EDL) [18].
Because of the electrostatic interaction, the counterion
concentration near the solid surface is higher than that
in the bulk liquid far away from the solid surface.
Immediately next to the solid surface, there is a layer
of counterions which are strongly attracted to the solid
surface and are immobile. This layer is called the compact
layer, normally about several Angstroms thick. From the
compact layer to the uniform bulk liquid, the counterion
concentration gradually reduces to that of bulk liquid.
Tons in this region are affected less by the electrostatic
interaction and are mobile. This layer is called the diffuse
layer of the EDL. The thickness of the diffuse layer is
dependent on the bulk ionic concentration and electrical
properties of the liquid, usually ranging from several
nanometers for high ionic concentration solutions up to
the order of microns for distilled water. Generally, for
macrochannel flow the EDL effects can be safely
neglected as the thickness of the EDL is very small com-
pared with the characteristic size of channels. However,
for microchannel flow the thickness of the EDL is often
comparable with the characteristic size of flow channels.
Thus the EDL effects originated from the electrostatic
interaction between ions in liquid and the charged solid
(flow channel) surface may play an important role in
microchannel flow and heat transfer.

When a liquid is forced through a microchannel under
an applied hydrostatic pressure, the counterions in the
diffuse layer (mobile part) of the EDL are moving
towards the downstream end. The movement of coun-
terions or electrical charges, however, generates an elec-
tric field with an electrokinetic potential called the
streaming potential [18]. This induced streaming poten-
tial is a steady-state potential difference which builds up
along a microchannel. The presence of the EDL field and
the streaming potential will exert electric forces on the
ions in the diffuse double layer, and hence have a pro-
found influence on the motion of ions. It is obvious that
when ions move in a liquid, they will pull the liquid
molecules to move with them. Therefore, the liquid flow
and hence the heat transfer are affected by the presence

of the EDL field and the streaming potential. Such
phenomenon are usually referred to as electrokinetic
effects [18].

The theory of the electrokinetic effects on micro-
channel flow characteristics has been well established
[19]. Burgreen and Nakache [20] studied the effect of the
surface potential on liquid transport through ultrafine
capillary slits with the Debye-Huckel linear approxi-
mation to the electrical potential distribution under an
imposed electrical field. Rice and Whitehead [21] con-
ducted a research on the same problem in narrow cyl-
indrical capillaries. Levine et al. [22] extended Rice and
Whitehead’s model to a higher surface potential by
developing an approximate solution of the Poisson—
Boltzmann (P-B) equation. Recently, Mala et al. [23]
presented a paper on a microchannel flow and heat trans-
fer between two parallel plates with electrokinetic effects.
In addition to the above mentioned theoretical studies,
the experimental evidence of the electrokinetic effects on
the liquid flow in microchannels were also provided in
the literature [19]. More recently, Mala et al. [24] reported
experimental studies of flow of distilled water and aque-
ous solutions through silicon and glass microchannels
between two parallel plates. Microchannels with a height
ranging from 10-280 um were used in their measure-
ments. Their results amply demonstrated that the liquid
flow in such a microchannel was strongly influenced by
the electrokinetic effects. For example, depending on the
channel height and the electrical properties of the channel
surface, the measured flow rate of the distilled water
can be 80% lower than that predicted from the classical
Poiseuille flow equation.

Generally, most of these cited studies of electrokinetic
effects on liquid flow dealt with one-dimensional EDL
field, which holds only for simple geometric channels,
such as circular cylinders and slit-shaped channels. No
study has been reported to consider the electrokinetic
effects on the forced flow in rectangular microchannels.
However, in practice, the cross-section of microchannels
made by modern micromachining technology is close to
a rectangular shape [25]. In such a situation, a two-
dimensional P-B equation is required to describe the
electrical potential distribution in the rectangular chan-
nel; and the corner of the channel may have particular
contribution to the EDL field, subsequently to the fluid
flow and heat transfer.

To evaluate the electrokinetic effects on the micro-
channel liquid flow and heat transfer, our focus in this
paper is restricted to a steady-state, fully-developed, lami-
nar liquid flow and convection in rectangular micro-
channels. First, a non-linear, two-dimensional Poisson—
Boltzmann (P-B) equation is solved numerically. Then
an additional body force originating from the electrical
double layer (EDL) and the electrokinetic fields is intro-
duced to the conventional Navier—Stokes (N-S) equa-
tion. Following that a procedure is developed to obtain
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an exact solution to the modified N-S equation. Finally,
the general energy equation for rectangular micro-
channels is constructed and the calculations for the
energy equation are carried out. The flow and heat trans-
fer characteristics with/without consideration of the EDL
effects are compared and discussed.

2. Electrical double layer field in a rectangular
microchannel

In order to consider the EDL and the electrokinetic
effects on the fluid flow in rectangular microchannels, we
must evaluate the distributions of electrical potentials
and net charge density in a rectangular microchannel.
Consider a rectangular microchannel of width 2 W, height
H, and length L as illustrated in Fig. 1(a). According to
the theory of electrostatics, the relationship between the
electrical potential y and the net charge density per unit

glass cover

microchannel

silicon wafer

| q

Fig. 1. (a) A rectangular microchannel (width 2, height H,
length L). (b) Schematic of the microchannel cooling system.

volume p, at any point in the solution is described by the
two-dimensional Poisson equation

2 2
VLT e
oyt 0z* &80
where ¢, is the dielectric constant of the solution and ¢, is
the permittivity of vacuum.

Assuming the Boltzmann distribution equation is
applicable, the number concentration of the type-i ion in
a symmetric electrolyte solution is of the form

1y = ng exp (- ”‘”) @

(M

kT

where n,, and z; are the bulk concentration and the valence
of type-i ions, respectively, e is the elementary charge, k,
is the Boltzmann constant, and 7 is the absolute tem-
perature. Strictly speaking, the Boltzmann distribution is
applicable only when the system is in equilibrium state.
If there exists a liquid flow, the ionic concentration dis-
tribution may be distorted by the presence of the flow
and hence should be described by the general Nernst—
Planck [26] (i.e., the particle mass transfer) equation. In
such a case, the problem may become more difficult to
deal with since the Poisson equation, the Nernst—Planck
equation, and the equation of motion are coupled. How-
ever, in the literature many previous studies [19-23] sim-
ply assumed that the Boltzmann distribution is applicable
without giving any proof. As such, the validity of Boltz-
mann distribution applicable to the microchannel flow
has been examined in this study. It was found that only
for a microchannel flow with a very small Peclet number
or in a fully-developed hydrodynamic state, the Boltz-
mann distribution can be safely applied. The detailed
proofis given in Appendix A.

The net volume charge density p. is proportional to
the concentration difference between symmetric cations
and anions, via

zey

p. = ze(n, —n_) = —2zen, sinh (—) (3)

koT)

Substituting equation (3) into the Poisson equation
leads to the well-known Poisson—Boltzmann equation.

0* 0° 2 ,
T T 2zem o (V) )
oy 02 £ kT

By defining the Debye—Huckel parameter

K = (2%’ ny/e.eoky T)'? (1/x is normally referred to as the
EDL thickness) and the hydraulic diameter of the rec-
tangular microchannel D, = 4HW/(H+2W) and intro-
ducing the dimensionless groups: Y = y/D,, Z = z/D,,
K = kD, and ¥ = zeys/k, T, the above equation can be
non-dimensionalized as

Y ’Y
oy 0z?

= K?sinh ¥ ®)
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here Y and Z are non-dimensional coordinates shown in
Fig. 1, K is the non-dimensional electrokinetic diameter
defined as the ratio of the hydraulic diameter to the
electrical double layer thickness, and W is the non-dimen-
sional electrical potential representing the ratio of the
electrical energy zey to the thermal energy k7.

Due to the symmetry of a rectangular channel, equa-
tion (5) is subjected to the following boundary conditions
in a half of the rectangular cross-section :

- H -
Y=0 Y={ Y= ¥=¢ (62)
Dh
oY w -
Z=0 ;=0 z= Ww=( (6b)

where {, defined by { = ze(/k,T, is a non-dimensional
zeta potential of the channel walls (here { is the zeta
potential of the channel wall). The zeta potential is a
measurable electrical potential at the shear plane, i.e.
the boundary between the compact layer and the diffuse
layer, as defined in the EDL theory [18].

In order to solve this non-linear, elliptic, differential
equation, a numerical finite-difference scheme [27] is
introduced to derive this differential equation into
discrete, algebraic equations. The non-linear source term
in equation (5) is linearized as

sinh¥,,, =sinh¥,+(¥,,., —¥,)cosh ¥, 7

where the subscript (n+ 1) and n represent the (n+ 1)th
and the nth iterative value, respectively. The derived dis-
crete, algebraic equations are solved by using the Gauss—
Seidel iterative procedure. The solution of the linearized
P-B equation with the same boundary conditions is
chosen as the first guess value for the iterative calculation.
The under-relaxation technique is employed to make this
iterative process converge quickly. The criterion of
numerical convergence is chosen as 107, which is the
relative desired accuracy (given as |V, ,—Y,|/
¥, < 10~%) for the calculated non-dimensional potential
values at each grid point on two successive iterations.

After the electrical potential inside the rectangular
microchannel is computed, the local net charge density
can be obtained from equation (3) as

p(Y,Z) = —2zenysinhY(Y, Z) ®)

This local net charge density is required to determine
electrostatic force caused by the presence of the EDL
field. Such an electrostatic force is considered as an
additional body force existing in microchannel flow to
modify the conventional Poiseuille flow equation, which
will be discussed in the next section.

3. Flow field in a rectangular microchannel

Consider the case of a two-dimensional, forced, lami-
nar flow through a rectangular microchannel as illus-

trated in Fig. 1(a). The equation of motion for an incom-
pressible liquid is given by

oV
Pras +p(V:V)V = —VP+F+p,V’V. ©)

In this equation, p; and y; are the density and viscosity
of the liquid, respectively. For a steady-state, fully
developed flow, the components of velocity V satisfy
u=u(y,z) and v =w =0 in terms of Cartesian coor-
dinates. Thus, both the time term dV/dt and the inertia
term (V -+ V)V vanish. Also, the hydraulic pressure P is a
function of x only and the pressure gradient dP/dx is
constant. If the gravity effect is negligible, the body force
F is caused only by the action of an induced electrical
field E, (see the explanation in the electrokinetic potential
section) on the net charge density p.(Y, Z) [determined
from equation (8)] in the electric double layer region,
ie. F, = E,p.. With these considerations, equation (9) is
reduced to
52u+ u 1dP 1 Ep(r.9) (10)
oy o2 mdx g el 2

Defining  the  reference  Reynolds  number
Re, = peD, U/ and non-dimensionalizing equation (10)
via the following dimensionless parameters

WA JUE i R S (11a)

H=— = = a
U oU? D, Re,

Q _ Dh Reo dl E_x _ Eth ReO (] 1b)

dXx p:U? dx {o

where U is a reference velocity, P, is a reference pressure,
and (, is a reference electrical potential, one can obtain
the non-dimensionalized equation of motion

’an  0*a dP .
+ = _

oy? oz> dX pu2

Substituting p.(Y, Z) by equation (8) and defining a

new dimensionless number G, = 2zen{,/p:U?, the equa-
tion of motion may, therefore, be written as

o*a *a  dP . .
oy +622 =E+G1Exsmh‘P(Y,D. (13)
The symmetric and no-slip boundary conditions that
apply for the velocity i are

Ep.(Y,Z). (12)

Y=0 a=0 v=11 a_0¢ (14a)
= = _Dh = a
o W

It is worth mentioning here that the present model is
within the frame of the continuum flow, particularly, the
no-slip boundary condition is assumed to be applicable
at the channel wall. However, it has been speculated by
a few investigators that slip flow may occur in micro-
channel flow. Arkilic et al. [17] investigated gaseous
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helium flow through microchannels of 1.33 um in height
for pressure drop from 0.2-1.5 atm. It was shown that
the Navier—Stokes equations with slip flow boundary
condition can give a good estimate of the flow situation.
Choi [28] also conducted experiments on gaseous nitro-
gen flow in circular microtubes with diameters ranging
from 2-81 um. He found that slip flow must be considered
for the tube diameter less than 3 um. On the other hand,
for liquid flow, Russian scientists [29] discovered from
experiments that the conditions for the slip flow to occur
depend on not only the size of channels but also the
characteristics of fluid and channel surfaces. It was found
that the liquid slip flow may have appreciable effects
when non-polar fluid flow over hydrophilic solid surfaces
or aqueous solution flow over hydrophobic solid surfaces
in microtubes with the diameter less than 2 um. Although
it is still being debated that when slip flow effects become
important as channel size decreases, the aqueous solution
flow in a hydrophilic silicon channel of tens of microns
considered in this work can certainly be treated as a no-
slip flow.

By using the Green’s function formulation, the solu-
tion of equation (13) subjecting to the above boundary
conditions can be expressed as

(. 2) = ~tim |

T

' HID, (WD,
de J J G(Y,Z.t|Y.,Z 1)
=0 Y=0JZ=0

arF
><[d—y-i—GlExsinh‘P(Y’,Z/)}dY’dZ/. (15)

Here G(Y,Z,t| Y’,Z’,7) is the Green’s function which
may be found by using the separation of variables method
[30]. The expression for G(Y, Z,t| Y, Z’, 1) is given by
G(Y,Z,t|Y,Z 1)

_4D; m>  (2n—1)?

— - _ ZDZ . — (t—
WHmZ] ngl P { " " |:I"I2 - 4W2 :|( T)}
o sin mnD, v)si mnDy, v

si I sin 7

X COS [M Z} cos [MZ} (16)

2w 2w

Substituting equation (16) into equation (15) and
rearranging it, one can obtain the non-dimensional fluid
velocity profile in the microchannel as follows :

s a7
D} dx

(—1)'[(=1)" —1] sin <"”Z)“ Y)

(2n—1)nD,
X COS [ W Z

a(Y,Z) = —

3
Il

X
™Ms

2 2 _1 2
m(2n—1) [ﬂ +w}
H>  4W?

. [(mnD, v 2n— l)nDhZ
sin H cos —w

4 __ > 59

- G,E,

rHW mgl n; ﬁ N M

H> 4>

H/D, (WD, mnD,
X J J sin <7 Y/>

Y=0Jz=0 H

2n—1)nD

X o8 [% Z’J sinh (Y, Z)dY dZ". 17)

If there is no electrostatic interaction, the second term
on the right hand side of the above equation vanishes.
The fluid velocity reduces to

s ar
D} dx

(—1)"[(—1)"—1]sin (m’;f“ Y)

< cos [M Z}

ﬂO(Yva = -

2w

(18)

X
M
s

2 n—1 2
m(2n—1) |:m7 + w}
H*? 4w?

which is the well-known Poiseuille flow velocity profile
through the rectangular channel.

Using equations (17) and (18), the mean velocity with
and without the consideration of the effects of the EDL
may be written, respectively, as

16HWC‘17}3
D} dx

Uyye =

[(=D"—1]*

2 2 71 2
o Qn—1)? [£+MJ
H? 4W*

(=D'(=D"=1]

m@2n—1) [mz + (Zn—l)z}
H*? aw?

HIDY (WIDy (mmD,
X sin Y’
Y=0JZ2=0 H

2n—1)xD
X cos [% Z’} sinh (Y, 2)dY’ dZ’

(19)

and
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_ 16HWdP
Upgave = nGDﬁ dXv
o0 o0 1
X . (20)
mz::] n;] 5 5 m2 (2}’!— 1)2
m2n—1)"|—+——
H? aw?

Thus, the non-dimensional volume flow rate
through the rectangular microchannel, defined by
0. = 0.,/2HWU, is given by

O\ = e (2]

Correspondingly, in the absence of the electrical double
layer, the non-dimensional volume flow rate is expressed
as

Qo»r = paye- (22)

In order to calculate the fluid velocity distributions,
the analytical solution equation (17) for the velocity is
used to obtain the ‘exact solution’ which, in practice,
usually means an error of 0.01% or less. As seen from
equation (17), the velocity distribution finally is expressed
by two infinite series. Therefore, usually a very large
number of terms in series is needed to achieve this error
criteria. To reduce computation time, the Aitken’s pro-
cedure [30] is employed.

4. Electrokinetic potential in a rectangular
microchannel

So far, we have derived the distribution of the non-
dimensional electrical potential and the net electrical
charge density, equation (7) and equation (8), and the
non-dimensional fluid velocity profile and mean velocity,
equation (17) and equation (19). However, as seen from
equations (17) and (19), the local and the mean velocity
can be calculated only when the non-dimensional induced
electrical potential, E,, is known. As explained
previously, the pressure-driven liquid flow makes the
counterions net charge in the diffuse double layer move to
the downstream end. The movement of electrical charges
forms an electrical current, called the streaming current,
flowing the same direction as the liquid flow. Cor-
respondingly, a flow-induced electric potential, i.e. the
electrokinetic potential, is set up along a microchannel.
This potential in turns generates an electric current, called
the conduction current, to flow in the opposite direction
to the pressure-driven liquid flow. When the conduction
current [, is equal to the streaming current I, a steady
state is reached. Then the net electrical current 7 should
be zero.

I=I1+I =0. (23)

The electrokinetic potential at the steady-state is called
the streaming potential.

Due to symmetry of the rectangular microchannel, the
electrical streaming current 7 is defined as [18]

HID, (*W/D,
I = 2D§UJ J a(Y, Z)p(Y,Z)dYdZ. (24)
Y=0 JZ=0

The electrical conduction current I, in the micro-
channel consists of two parts [18]: one is due to the
conductance of the bulk liquid; the other is due to the
surface conductance or the conductance of the compact
layer of the EDL. This electrical conduction current can
be expressed as

2HWE,
D, Re,

where I, and I, are the bulk and the surface electrical
conduction current, respectively. Z, is the total electrical
conductivity and it can be calculated by
A= Ao+ (APJA) [18]. Here P, and A, are the wetting
perimeter and the cross-section area of the channel,
respectively, 4, is the bulk conductivity of the solution,
and A, is the surface conductivity, which may be deter-
mined by experiment [24].

Substituting equation (8) for p.(Y,Z) into equation
(24) and putting equations (24) and (25) back into equa-
tion (23), one can show that the non-dimensional stream-
ing potential takes the form

Ic = 1bc+1sc = /ltExAc = (25)

_ D}Z1 _ HID, (WD,
E =23, Reoj J (Y, Z)sinh ¥(Y, Z2)dYdZ
HW Y=0 JZ=0

(26)

here the non-dimensional number G, = 2zen,D,U//.,.
Furthermore, the substitution of #(Y, Z) from equa-

tions (17) and (18) into equation (26) finally gives the

non-dimensional streaming potential as

D2 HID, (W/D,
~ G, R iy (Y, Z
a2 €g ,[y:o JZ:O a,(Y,2)
_ xsinh'W(Y,Z2)dYdZ

E, = 27)
Dlit - — H”‘Dh W"Dh
1+ G,G, Reoj f C
H>W? Y=0 Jz=0
xsinh¥(Y,Z2)dYdZz
where
4
Cy, =
n’D}

X

m

)

In

. [mnD, v (2n—1)nD, 7
B sin I cos W
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| m*  (2n—1)?

H*? 4w

HIDy (WD, mnDy, _, 2n—1)nD,
X cos|———Y |cos| —— "2
v—oJzr_o H 2W

xsinh ¥(Y, Z)dY dZ'.
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Once knowing all the parameters shown in equation
(27), one can readily determine the non-dimensional
streaming potential, which is required to calculate the
velocity profile [equation (17)], the mean velocity [equa-
tion (19)], and the volumetric flow rate [equation (21)].

5. The electroviscous effect

It is apparent from the previous analysis that the pres-
ence of an EDL field and a streaming potential exerts
electrical forces on the counterions in the liquid, and
hence has a profound influence on the flow behavior. The
direct consequence is that a liquid flow is produced in the
direction opposite to the pressure-driven flow. Therefore,
the flow rate in the pressure drop direction is reduced.
The liquid thus appears to exhibit an enhanced viscosity
if the flow rate is compared with that in the absence of
the EDL.

As we have already shown, the non-dimensional flow
rate through the microchannel with and without the con-
sideration of the EDL effects are given by equation (21)
and equation (22), respectively. Equalizing equation (21)
with equation (22), i.e. O, = O, and using expressions
for it,,. and i, in equation (19) and equation (20) as
well as dP/d X and E, in equation (11b), one may get the
ratio of the apparent viscosity to the bulk viscosity as

) 1
P (28)

My DG, E, C,

Y SHwapian ¢,
where
» —D'[(=D)"—1
€= mz::l n;l = [r(nz : (271E 1)?
m(2n—1) |:7 + 7}
H? 4W*?

ol ()
X sin| ——Y
Y=0JZ'=0 H

2n—1)nD
X cos [% Z’} sinh ¥(Y, Z)dY’ dZ’

e %% (1 =1
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HY 4w

Since the non-dimensional pressure gradient is negative
and both C, and C, are greater than zero, it is easy to
show that this ratio is greater than 1, which is referred to
as the electroviscous effect [18].

6. Friction coefficient

The friction factor for the flow through rectangular
channels in the conventional fluid mechanics is defined
as

dp dp

ot T

pue2 2 Regiil,

Therefore, the friction coefficient, i.e. the product of the
friction factor f'and Reynolds number Re = pDy i,/ s,
is given by

(29)

dpP
S dxX
Co=fRe =% (30)
2uave
Substituting for i,,. in equation (10) leads to
1 1
(€29)

Ci=— ==
YT 16 2HWC, G EC,
n°Dy n*Di(dP/dX)
Clearly, if there are no EDL effects, the second term in
the denominator of equation (31) will be zero, and hence
C; is a constant for a given channel geometry as known
in the classical theory of fluid mechanics. However, when
the EDL effect is considered, equation (31) shows that
C; is no longer a constant, but a function of the EDL
field, the streaming potential, and the pressure gradient,
etc.

7. Energy equation

In the application of a microchannel heat sink for
cooling a microchip, a silicone wafer plate with a large
number of microchannels is attached to the chip, as illus-
trated in Fig. 1(b). The channels are sealed by anodically
bonding a glass plate on the top. A liquid is forced to
flow through these microchannels to carry the heat away.
All microchannels are assumed to have a uniform rec-
tangular cross-section with the same geometric par-
ameters as shown in Fig. 1(a). A microchannel in the
center part of the plate will be considered in our analysis
below.

As the spatially varying interfacial heat transfer
coefficient cannot be prescribed, a conjugate heat transfer
problem which consists of simultaneous computation of
heat transfer in both the solid channel wall and the
cooling liquid has to be solved [31]. However, our objec-
tive in this study is to evaluate the influence of elec-
trokinetic effects on convection heat transfer in micro-
channels. To simplify the problem, an approximation of
a uniform heat transfer coefficient along the channel wall
is made. This approximation was adopted to perform
analysis of heat transfer in microchannels by many other
researchers, such as Tuckerman and Pease [2], Keyes
[32], Samalam [33], and Bejan and Morega [34]. Under
such an approximation, only energy equation for the
cooling liquid needs to be considered for the micro-
channel cooling system.

For a steady-state, fully developed, laminar flow in a
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microchannel, the energy equation (with consideration
of the axial thermal conduction in flow direction and
the viscous dissipation) for the cooling liquid takes the
specific form:

00 <820 0%0 620> U [<5u>2 <6u>2:|
uoo =+ e
0x x> oyr 0z2) PG| \Oy 0z

(32)

where 0 and «; are the temperature and the thermal diffu-
sivity of the cooling liquid, respectively, C,is the specific
heat capacity of the cooling liquid.

Consider a microchannel in the center part of the plate.
Taking advantage of the symmetry of the rectangular
channel, we will center the computational domain in a
half channel as shown in Fig. 1(a). Thus, the adiabatic
condition can be used along the channel symmetric center
line, i.e. (09/0z) = 0 at z = 0. Uniform heat flux ¢” gen-
erated by electronic chips is applied to the bottom wall
of the channel and may be expressed as —k(03/0y) = ¢”
at y = 0 (here k; is the thermal conductivity of the liquid
coolant). Since the thermal conductivity of the glass is
about two-order of magnitude lower than that of a silicon
wafer, we assume that the top boundary is insulated. This
is a conservative assumption which will lead to slight
underestimation of the overall heat transfer coefficient.
This assumption yields (09/dy) = 0 at y = H. Another
approximation made here is that the heat flux along the
channel height, ¢}, is uniform, which is identical to the
assumption that the heat transfer coefficient along the
channel height is constant. For a steady-state heat trans-
fer, an energy balance equation is applied to the wall
(silicon wafer) between two channels: ¢"d = 2¢7H (here
d is the thickness of the wall between two channels),
which leads to ¢y = k¢(09/0z)|._ = (d/2H)q". The error
induced by this approximation depends upon the ratio
of the thermal conductivity of the silicon wafer to that of
the cooling liquid and on the geometric ratio of channel
height to width as well. As mentioned above, a more
precise analysis would require solving a conjugate heat
transfer in both solid silicon wafer and cooling liquid
simultaneously.

In terms of §=(9-9/q"Di/k). Prr=(uipwy),
Ec =(p:U*/piCprg" Dy/ky), X = (x/Dy) and the non-dimen-
sional groups in equations (11a) and (11b), the energy
equation can be normalized as:

03 1 0*9
i0— =
0X  Re, Pre\px?

+029+62g +£ %24- %2 (33)
0Y? 0z2) Rey | \0Y 0z

and the appropriate boundary conditions are :

yoo B__ y_H B _, (34a)
R 2 b, or~ 4

o9 H 8§ d
Z=0 =0 Z=0 =5n (34b)
X=0 J=0. (34c)

To consider thermal conduction in axial flow direction,
the thermal boundary condition at the outlet of the chan-
nel has to be specified. Unfortunately, this information is
not usually available. Taking advantage of the numerical
scheme, we choose this thermal boundary condition in
such a way that the temperature gradient at the outlet of
the channel is equal to that of its adjacent upstream grid
point. The validity of such a boundary condition at the
outlet of the channel will be seen from the calculated
results shown later.

Based on the thermal energy balance on the channel
length L, the non-dimensional temperature at the outlet
of the channel can be expressed as:

A
* " \2H ' 4HW)Re, Pr;
+ 2L E H,fDh H,"Dh @ 2
H+WRey|y_y |, | \OY
o\’
- YdZ.
+ < p Z> Jd d (35)
By definition, the non-dimensional bulk mean tem-

perature is calculated at the axial position in the following
way

D 12 HID, (WD,
g = . g i d Y dZ
v (X) Wi, L:O L:o a (36)

Before solving the energy equation, it should be
pointed out that the problem we are dealing with is
extremely complicated. In principle, the Poisson—-Boltz-
mann equation, the equation of motion, and the energy
equation are coupled. On the one hand, the presence of
the EDL field and the flow-induced electrokinetic field
may cause a deviation of the Poiseuille flow pattern.
Consequently, such a ‘distorted’ (compared with the
Poiseuille flow) flow field expressed by equation (17) will
have impact on heat transfer in microchannels via the
energy equation (32). On the other hand, a change in
temperature may affect the EDL field and hence the fluid
velocity profile. Such influences are reflected from the
non-dimensional electrokinetic diameter K = xD,, or
more precisely from the so-called Debye—Huckel par-
ameter defined as x = (2z%¢*ny/e.60k, T)"?. Fortunately,
our calculations showed that the effects of temperature
on the EDL field and the fluid velocity field are negligible.
This can be understood as follows: it should be noted
that the dielectric constant is dependent on temperature.
For aqueous solutions the dielectric constant mon-
otonically changes in an opposite way to temperature
variation [35]. This means if temperature increases, the
dielectric constant will decrease. Thus, the dependence of
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Debye—Huckel parameter on temperature is very weak.
Consider the following simple example. For a single
phase convection, the inlet and the outlet temperature
are chosen as 7, = 298 K (25°C) and 7, = 335 K (80°C),
respectively. The corresponding dielectric constant are
78.5 and 61.0, respectively [35]. A simple calculation
shows that the ratio of the Debye—Huckel parameter is
(x5/1c;) = 1.04. Accordingly, the ratio of the calculated
mean velocity in such an extreme case is
(ayer/Tlaver) = 1.01 only. Therefore, we can safely assume
that the Poisson—Boltzmann equation is decoupled from
the energy equation in our calculations.

The energy equation is computed by using the control-
volume based finite difference method [27]. Since the flow
and the heat transfer are decoupled and the velocity field
has already been solved before, the viscous dissipation
term can be easily treated as the source term, which
is independent of temperature. The upwind scheme is
employed to approximate the convection term. Central
differences are used to discrete the diffusion terms. To
validate the numerical code, the program was tested by
reproducing the same heat transfer problem as stated by
Chandrupatla and Sastri [36]. The grid-dependence of
the results was verified by repeating the same calculation
for various numbers of grid points.

After the temperature distribution is obtained, the
local Nusselt number at each axial step can be computed
by

h. D, d+2W 1
N = = 2 (H+2W) .00 =5, 7
where /i, is the local heat-transfer coefficient and J; is
the non-dimensional average temperature of the channel
wall. The mean Nusselt number is given by :

D, L/D,
Ntyye r, = T Nuy y, dX. (38)
Z=0

8. Results and discussion

In the previous sections, general equations were
derived for characterizing the pressure-driven liquid flow
and heat transfer through a rectangular microchannel.
Examination of these equations reveals that the charac-
teristics of such forced microchannel flow and heat trans-
fer are determined by following non-dimensional par-
ameters K, dP/dX, G, G,, and Ec. Physically, the non-
dimensional electrokinetic diameter, K = «D,, represents
the ratio of the hydraulic diameter of a rectangular chan-
nel to the thickness of the EDL. By definition, the
non-dimensional ~ pressure  gradient, dP/dX =
[Dn(dP/dx)/u:U], can be interpreted as the ratio of the
mechanical force to the viscous force. G, = (2zenyl,/p:U?)
characterizes the ratio of the EDL energy to the mech-
anical kinetic energy. G, = (2zen D, U//(,) represents the

ratio of the streaming current to the conduction current.
Eckert number, Ec, measures the viscous dissipation
effect.

In order to estimate the values of these non-dimen-
sional parameters, we consider a fully developed, laminar
flow of an aqueous 1:1 electrolyte (e.g., KCI) solution
through a rectangular microchannel with a height of 20
um, width of 30 um and length of I cm. At a typical room
temperature 7' = 298 (K), the dielectric constant and the
viscosity of the liquid are &, = 78.5 and p; = 0.90 x 10~?
(kg ms™"), respectively. An applied pressure difference of
AP = 2 (atm) and an arbitrarily chosen reference velocity
U = 1.0 (ms™") are considered. An experimentally deter-
mined correlation [24] for the zeta potential of the P-
type silicon plates with different concentrations of KCl
electrolyte solution is used in our calculation. For elec-
tronic cooling systems, the fluid temperature at the
entrance of the channel and the heat flux are chosen as
298 K and 1.0 x 10° W m 2, respectively.

With the above mentioned values, it is quite straight-
forward to calculate the flow and heat transfer charac-
terizing parameters, such as velocity distribution, flow
rate, friction constant, temperature distribution, and
Nusselt number by the equations developed above.

8.1. EDL potential profile

The non-linear, two-dimensional Poisson—Boltzmann
equation is computed for two sets of concentrations and
zeta potentials: ¢y = 107¢ M (ny = 6.022 x 10%),
(=150 mV and cp,=10"* M (1, = 6.022x 10'®),
(x> =200 mV. The results for the non-dimensional EDL
potential profile across a quarter of the rectangular chan-
nel are plotted in Fig. 2(a)—(b). As seen in Fig. 2, the
EDL field exists only in the region close to the channel
wall for the concentration ¢y = 107¢ M in Fig. 2(a).
However, the electrical potential profile can extend to a
much larger portion of the channel for the concentration
¢e» = 1078 M in Fig. 2(b). This indicates that the EDL
effects may be significant for lower concentration aque-
ous solutions. Closer examination of Fig. 2 reveals the
strong corner effect on the EDL potential profile. This is
an important feature of the two-dimensional Poisson—
Boltzmann equation which is expected to influence the
flow field in such a rectangular microchannel.

8.2. Velocity distribution

The computation of non-dimensional velocity dis-
tribution according to equation (17), which is an exact
solution to the equation of motion by the Green’s func-
tion formula, is carried out for a given external pressure
difference. In Fig. 3(a)-(d), the distribution of non-
dimensional velocity is plotted for two different micro-
channels of 30 x 20 um and 30 x 40 um with and without
the consideration of the EDL effects. As seen from these
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Fig. 2. Non-dimensional EDL potential profile (in one quarter of cross-sectional microchannel with width 30 um and height 20 ym).
(@) ¢y = 107 M, {,; = 150 mV. (b) ¢, = 107* M, {, = 200 mV.
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Fig. 3. Non-dimensional velocity distribution (in one quarter of cross-sectional microchannel). (a)(c) With EDL effects (¢, = 107% M,
{. =200 mV) for channel 30 x 20 and 30 x 40 um, respectively. (b)(d) Poiseuille profile for channel 30 x 20 and 30 x 40 um, respectively.
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Fig. 3—continued.

figures, the EDL exhibits significantly stronger effects on
the flow pattern in the smaller channel in Fig. 3(a) than
that in the larger channel in Fig. 3(c). In Fig. 3(a) and
(c), it is clearly shown that the velocity distributions are

distorted and the flow velocity near the channel wall

approaches zero due to the action of the EDL field and
the induced electrokinetic potential. Also the maximum
velocity at the center of the channel are much lower than
that in the classical Poiseuille flow in Fig. 3(b) and (d).

Moreover, as expected from the two-dimensional P-B
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equation, the flow fields around the channel corner in
Fig. 3(a) and (c) deviate from the classical Poiseuille flow
pattern in Fig. 3(a) and (c), respectively.

8.3. Volumetric flow rate

As explained before, the streaming potential drives
counterions in the diffuse double layer to move in the
opposite direction to the pressure-driven flow and these
moving ions drag the surrounding liquid molecules with
them. This produces a reduced volumetric flow rate as
predicted by equation (21). The result is demonstrated in
Fig. 4, which depicts the volumetric flow rate as a func-
tion of the non-dimensional pressure difference for two
sets of concentrations and zeta potentials. Obviously Fig.
4 shows for a lower concentration of the electrolyte solu-
tion and a higher zeta potential of the channel wall, the
volumetric flow rate is remarkably reduced. The expla-
nation for this is that if the ionic concentration is lower,
which implies a smaller Debye—Huckel parameter, i.c. a
larger EDL thickness, the EDL exhibits stronger effects.

8.4. Friction coefficient

In Fig. 5, the friction coefficient C;, which is the product
of the friction factor and Reynolds number as given by

C. Yang et al.|Int. J. Heat Mass Transfer 41 (1998 ) 4229-4249

equation (31), is plotted against the microchannel height
with a fixed channel width for two sets of concentrations
and zeta potentials. It is well known that from the classi-
cal theory (no EDL effects) the friction coefficient for a
rectangular channel is only dependent on the geometric
ratio of channel height to width. However, the cal-
culations from our model indicate that the zeta potentials
of the solid surface and the concentrations of the elec-
trolyte solution have a significant influence on the friction
coefficient. For the case of a smaller value of the zeta
potential and a higher ionic concentration, the friction
coeflicient is very close to that predicted by the classical
theory. But as the zeta potential increases and the ionic
concentration decreases, which implies stronger elec-
troviscous effects, the friction coefficient drastically
increases. The presented result of the friction coefficient
dependence of the ratio of channel height to width is in
arough agreement with that obtained by Peng—Peterson—
Wang’s papers [10, 12].

8.5. Temperature field and Nusselt number
Generally, the effects of EDL and electrokinetic fields

reduce the liquid velocity and the flow rate, and conse-
quently increase the temperature in the microchannel.
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Fig. 4. Variation of non-dimensional volumetric flow rate with non-dimensional pressure difference for different concentrations and

zeta potentials.
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Fig. 5. Friction coefficient vs microchannel height with a fixed width of 30 um for different concentrations and zeta potentials.

Such effects on the temperature field are clearly shown in
Fig. 6(a)—(d), which depict the non-dimensional cross-
sectional temperature distribution at the middle cross-
section of the microchannel for two different channels
30 x 20 and 30 x 40 um, respectively. The general trend is
that the smaller channel suffers much stronger EDL
effects than the larger one. This may be understood as
follows : as the channel size gets smaller, the EDL thick-
ness becomes relatively larger and hence its effects
become stronger. In Fig. 7, the local non-dimensional
bulk mean temperature of the fluid is plotted as a function
of the channel length. Basically it shows a good linear
relation of temperature variation with the channel length.
This result verifies the validity of the temperature bound-
ary condition we specified at the exit of the microchannel.
From both Figs 6 and 7, a conclusion may be drawn:
under the conditions in our calculations, the EDL effects
on microchannel flow and heat transfer may become
unimportant when the channel size is larger than 40 ym.
This accords with the fact reported by Pfahler et al. [6,
7] that deviations from the classical Poiseuille flow were
experimentally observed in the small channels (hydraulic
diameter less than 40 pum).

To see the overall heat transfer characteristics, the local
Nusselt number vs the channel length with/without con-
sideration of the EDL effects for the channel of 30 x 20
um is shown in Fig. 8. It is seen that the Nusselt number
with the consideration of the EDL effects is lower than
that in conventional theory. For the limiting Nusselt
numbers the difference is over 10%. Moreover, it is
observed that for a fully developed, hydrodynamic flow
the thermal entrance effect on the microchannel heat
transfer can be neglected as it occupies only 1-2% of the
channel length. Figure 9 depicts the mean Nusselt number
as a function of the microchannel height with a fixed
width of 30 um. Again there is quite a difference between
the mean Nusselt numbers with and without the con-
sideration of the EDL effects. Also, closer examination
of Fig. 9 indicates that this difference becomes smaller as
the channel height increases and tends to be a constant
when the channel height is larger than 40-50 um. The
reason is that when the channel height becomes larger
the EDL effects become smaller. When the channel height
is over 40-50 um, the EDL effects are not from the chan-
nel height but from the channel width, which is fixed at
30 um.
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Fig. 6. Non-dimensional temperature distribution (in a half channel at the middle cross-section of a microchannel). (a)(c) With EDL
effects (¢, = 107 M, {. = 200 mV) for channel 30 x 20 and 30 x 40 um, respectively. (b)(d) No EDL effects for channel 30 x 20 and
30 x 40 um, respectively.
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Fig. 7. Local non-dimensional bulk mean temperature of the liquid vs non-dimensional channel length for different channel sizes (with

EDL effects: ¢, = 107* M, {, = 200 mV).

In addition, numerical tests were performed to evaluate
the influences of the axial thermal conduction in flow
direction and the viscous dissipation considered in the
energy equation (33). These effects are usually ignored in
macrochannel heat transfer treatment. It was found that
for the parameters chosen in this study the consideration
of the axial thermal conduction in flow direction only
causes a 0.03% increase in the non-dimensional bulk
mean temperature at the outlet of the channel and a
0.02% change of the mean Nusselt number, respectively.
Similarly, the consideration of the viscous dissipation
only causes a 0.05% increase in the non-dimensional bulk
mean temperature at the outlet of the channel and a 0.6%
change of the mean Nusselt number, respectively. These
results clearly show that the axial thermal conduction in
flow direction and the viscous dissipation have little
impact on microchannel heat transfer and therefore they
can be safely neglected. As such, it can be concluded that
the existence of anomalous behavior of heat transfer in
microchannels should be attributed to the effects that
influence the flow characteristics, such as the elec-
trokinetic effects.

9. Concluding remarks

The effects of the EDL at the solid-liquid interface on
the pressure driven liquid flow and heat transfer through
a rectangular microchannel are analyzed in this work.
The computational results show the EDL potential pro-
file exhibits different features from that predicted by the
one-dimensional P-B equation and shows strong corner
effects. The EDL field near the channel wall tends to
restrict the motion of ions and hence the liquid molecules
in the EDL region. For the cases of low concentration
solutions and high zeta potentials, the velocity distri-
bution, the volumetric flow rate, and the temperature
field are significantly affected by the presence of the EDL
and hence deviate from the prediction of the conventional
theory. The EDL field and the induced electrokinetic
potential act against the liquid flow, resulting in a higher
friction coefficient, a reduced flow rate, and a reduced
Nusselt number, depending on the geometric parameters
of the rectangular microchannels, the ionic concentration
of solutions, and the zeta potential of the channel wall.
Some experimentally observed anomalous phenomena
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Fig. 9. Mean Nusselt number vs microchannel height with a fixed width of 30 um.
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may be explained using the models developed in this
work.

Appendix

In the following, we will discuss the validity of the
Boltzmann distribution in the case of the microchannel
flow.

Generally, the ionic concentration distribution #; is
described by the Nernst-Planck equation [26], which
under steady-state conditions and in the absence of
source terms can be expressed in the convective-diffusion
form
V«(D;Vn)—V-(Vi*n) =0 (A1)
where D; is the diffusion coefficient of the type-i ion and
Vi, is the velocity of the type-i ion. Under such a situation,
the ion velocity V; can be decomposed into contributions
from hydrodynamic velocity V and a velocity u; due to
the electrostatic field acting on the ion (caused by the
presence of the EDL field). Then one can write

V,=V+u. (A2)

The velocity u; is related to the electrostatic force exert-
ing on the ions by the following equation

F. = zi¢E = fiu; (A3)
where z; is the valence of the type-i ion, e is the elementary
charge, E is the electrostatic field strength, and f; is the
hydrodynamic resistance coefficient. Noting that E is
given by

E=-Vy (A4)

(here ¥ is the electrical potential) and the hydrodynamic
resistance coefficient f; can be determined from the
Stokes—Einstein equation

kT

b AS
fi= (AS)
(here ky is the Boltzmann constant), one can readily show
that the velocity u; can be given by

zeD\Vy

== A6

W=y (A6)
Substituting equations (A6) and (A2) into equation

(1), and using V+-V = 0, yields

v zen;
2 L . . ! ! =
Vn; D, Vn+V (kaVW> 0. (A7)
The equation (A7) can be normalized as
V27— Peey Vit + V- (250 vy | = 0 (A8)

where 7; is the non-dimensional ionic concentration
ii; = (mi/nyy) (here ny, is the bulk concentration of the type-
iion), Pe is the Peclet number Pe = (|V|D,/D), ey is the
unit vector along the hydrodynamic velocity V direction.

(i) Considering a micromchanel flow with a very small
Peclet number, i.c. Pe ~ 0, the second term in the
equation (AS8) drops out and then equation (AS8)
becomes

z;er;
kT

Vi, +V: < ng) =0. (A9)

(i1) If the microchannel flow is fully-developed, the com-
ponents of hydrodynamic velocity V satisfy
u = u(y,z)and v = w = 0 in terms of Cartesian coor-
dinates. Under such conditions, equation (AS8) is
reduced to

a-i i -i
Vzﬁi—Pe,(%( 4v- <Z’;w> - 0. (A10)

Note that under steady-state situations no mass exchange
occurs at the channel wall. This implies that there is no
appreciable ionic concentration gradient along the axial
direction, i.e. (07;/0X) = 0. Accordingly, the equation
(A10) is also reduced to equation (A9).

In either case (i) or case (ii), one can readily solve
equation (A9) and obtain its solution, which is

I; = exp <_ j{f?) or n; = njp €Xp <_ 2?;/«) (AT

This is the well-known Boltzmann distribution. There-
fore, we may conclude that for a microchannel flow with
a very small Peclet number or in a fully-developed hy-
drodynamic state, the Boltzmann distribution equation
is still valid.
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